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The results of a linear elasticity analysis yields that nanorod inclusions aligned along the c axis of a thin film
of YBa2Cu3O7−�, such as BaZrO3 and BaSnO3, squeeze that matrix by pure shear. The sensitivity of the
superconducting critical temperature in that material to the latter implies that the phase boundary separating the
nanorod inclusion from the superconductor acts as a collective pinning center for the vortex lattice that appears
in external magnetic field. A dominant contribution to the in-field critical current can result. The elasticity
analysis also yields that the growth of nanorod inclusions can be weakly metastable when the inclusion is softer
than the matrix.
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I. INTRODUCTION

The ongoing development of thin films of superconduct-
ing YBa2Cu3O7−� �YBCO� for wire technology has resulted
in world record high critical currents.1 In external magnetic
field, the critical current is considerably enhanced by nano-
rod inclusions that are aligned in parallel to the crystalline c
axis.2–5 The enhancement is strongest at orientations of the
magnetic field parallel to the c axis. Understanding the fun-
damental physics behind this effect remains a challenge. It is
also unknown what drives the growth of nanorods in the first
place in YBCO films.

In this Brief Report, we provide insight into both of these
questions by computing the strain field due to nanorod inclu-
sions that thread a YBCO superconductor along the c axis.
The lattice constant of inclusions that optimize the critical
current is typically 8% larger than that of the YBCO matrix
in the a-b plane. Assuming a coherent phase boundary be-
tween the inclusion and a given epitaxial layer of YBCO, a
linear elasticity analysis yields that the nanocolumn is com-
pressed axially, while the YBCO matrix is squeezed by pure
shear about the nanocolumn. The critical temperature in op-
timally doped YBCO is known to couple strongly to pure
shear in the a-b plane.6 In applied magnetic field, we show
theoretically how this experimental fact results in substantial
collective pinning of the vortex lattice by the phase boundary
separating the nanocolumn inclusion from the YBCO
matrix.7,8 Also, the elastic energy shows weak metastability
at a high density of nanocolumns when the nanocolumn is
soft compared to the YBCO layer �see Fig. 1�. We believe
that this drives epitaxial growth of nanorod inclusions in
YBCO films.

II. TWO-DIMENSIONAL ELASTICITY THEORY

We shall determine first the elastic strain and the elastic
energy cost due to a single nanorod inclusion that threads a
film of YBCO along the c axis. Such nanorods are typically
composed either of BaZrO3 �BZO� �Ref. 2 and 3� or of
BaSnO3 �BSO�.4 Both are cubic perovskites, with lattice con-

stants �ain� that exceed that of the a-b plane in YBCO, aout
=3.86 Å, by 9% and by 7%, respectively.2–4 Let us tempo-
rarily ignore the effect of the lattice mismatch along the c
axis by considering only epitaxial layers that are far from
any possible partial misfit dislocation and that therefore
present a coherent phase boundary between the inclusion and
the YBCO matrix. Such partial misfit dislocations are accom-
panied by stacking faults,9 a topic which will be discussed
later in the concluding section. The assumption of a coherent
phase boundary is valid for a nanorod inclusion of diameter
less than the distance between possible misfit dislocations,9

aMoire= �aout
−1 −ain

−1�−1. BZO nanorods typically have a diam-
eter of3 2–3 nm, which satisfies the bound aMoire=5 nm.
BSO nanocolumns, on the other hand, typically have a diam-
eter of4 7–8 nm. It exceeds aMoire=6 nm, although not by
much.

Consider then a cylindrical nanocolumn inclusion that
presents a coherent phase boundary with a given epitaxial
layer of the YBCO matrix. Unit cells match up one to one
across the phase boundary in such case. The ideal axial sym-
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FIG. 1. The total elastic energy density Eq. �13�, in units of
E2D

�1� /�r1
2, versus the density of nanocolumn inclusions, in units of

1 /�r1
2, is plotted. The dashed line above corresponds to the elastic

energy of isolated nanocolumn inclusions. The radii in Eq. �13� are
set to r2

2= �3r1
2 for relatively soft and hard nanocolumns,

respectively.
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metry, assumed here for simplicity, implies a radial displace-
ment field, u�r�=u�r�r̂. We then have the boundary condi-
tion,

uout�rout� − uin�rin� = rin − rout, �1�

between the displacement fields of the nanocolumn �in� and
of the YBCO layer �out� at the phase boundary. The in-plane
lattice mismatch that it represents generates elastic strain in
both the inclusion and in the YBCO matrix. The elastic en-
ergy due to a two-dimensional �2D� strain field is given by
the integral,9

E2D = ��
d2r�1

2
c��� · u�2 +

1

2
c��� �ux

�x
−

�uy

�y
�2

+ � �ux

�y
+

�uy

�x
�2	
 , �2�

over the corresponding area �prime�, which is confined to r
�rin for the nanocolumn and to r�rout for the YBCO ma-
trix. Here, c� and c� are the 2D bulk compression and the 2D
shear moduli, respectively. A useful identity for the pure
shear component above reads

� �ux

�x
−

�uy

�y
�2

+ � �ux

�y
+

�uy

�x
�2

= 2��u�2 − �� · u�2 − �� � u�2. �3�

The strain tensor takes the form �u= �du /dr�r̂r̂+ �u /r��̂�̂ in
the present axially symmetric case. Combined with Eq. �3�, it
results in the compact expression for the elastic energy,
E2D=�d2r� 1

2c�r−1d�ru� /dr�2+ 1
2c�rd�r−1u� /dr�2�. Calculus

of variations then yields a nanocolumn inclusion squeezed
by pure compression and a surrounding YBCO matrix
squeezed by pure shear,

u��r� = − A0r for r � rin,

and u��r� = + B0rout
2 /r for r � rout, �4�

with corresponding strain tensors,

�u� = − A0I and � u� = B0�rout/r�2��̂�̂ − r̂r̂� . �5�

The total elastic energy Eq. �2� generated by the nanocolumn
inclusion is then E2D

�1� =2c�
�in��rin

2 A0
2+2c�

�out��rout
2 B0

2. Minimiz-
ing it with respect to the constants A0 and B0 while enforcing
the boundary condition, Eq. �1� yields optimal values rinA0
= ��r�c�

�out� / c�
�in�+c�

�out�� and routB0= ��r�c�
�in� / c�

�in�+c�
�out��.

Here �r=rin−rout. These then yield an elastic energy cost,

E2D
�1� = 2���r�2c�

�in�−1 + c�
�out�−1�−1, �6�

for the nanocolumn inclusion, which has an equilibrium ra-
dius rout+uout�rout� given by r0= c�

�in�rin+c�
�out�rout� / c�

�in�

+c�
�out��.
Let us consider next a field of many cylindrical nanocol-

umn inclusions of radius r0 centered at transverse locations
�Rn�. Suppose again that they all present a coherent phase
boundary with a given epitaxial layer of the YBCO matrix.
The displacement field is then a linear superposition of those
generated by a single nanocolumn inclusion Eq. �4�;

uin�r� = u��r − Ri� + �
j�i

u��rout/rin��r − Ri� + Ri − R j� ,

�7�

inside the ith nanocolumn and

uout�r� = �
j

u��r − R j� , �8�

inside the YBCO matrix. The pure shear terms that have
been added to the pure compression inside of a nanocolumn
Eq. �7� are required by the boundary condition Eq. �1�. Ob-
serve now, by Eq. �5�, that �2u� =0=�2u�. Inspection of the
elastic energy functional Eq. �2� combined with the identity
Eq. �3� then yields that the above superpositions are station-
ary because � ·u�, ��u�, and ��u� all vanish. Indeed, the
elastic energy cost reduces to a sum of surface integrals
around the phase boundaries of the form E2D=�iE2D

�1�

+�i� j�ei,j,i�out�+ei,i,j�out��+�i� j,k� ei,j,k�in�+ei,j,k�out��,
where the indices j and k refer to the terms in the superpo-
sitions Eqs. �7� and �8� and where the index i refers to the
phase boundary. The prime notation over the summation
symbols indicates that i� j ,k. Each individual contribution
ei,j,k is given by a surface integral around the circle Si of
radius rout that is centered at Ri :ei,j,k�X�=sgn�X�c�

�X�Ii,j,k,
with

Ii,j,k = �
Si

da · �u��r − R j�� · u��r − Rk� . �9�

Here, sgn�in�= +1 and sgn�out�=−1. Also, the measure da
on the circle Si points radially outward. Substituting in the
strain fields Eq. �5� above yields ultimately that ei,j,i=0
=ei,i,j and that

ei,j,k�X� = sgn�X�c�
�X��2��B0

2rout
6 ReRi,jRi,ke

i	j,k�i� − rout
2 �−2,

�10�

for i� j ,k �see Appendix�. Here, Ri,j =Ri−R j, and 	 j,k�i� de-
notes the angle between the vectors Ri,j and Ri,k. The 2D
elastic energy then is composed of a sum of one-body, two-
body �j=k� and three-body terms �j�k�, E2D=�iE2D

�1�

+�i� j,k� Vi,j,k, with the interaction energy given by

Vi,j,k = − �2��c�
�out� − c�

�in��B0
2rout

6 ReRi,jRi,ke
i	j,k�i� − rout

2 �−2.

�11�

Notice that Vi,j,k changes sign as a function of the relative
rigidity between the nanocolumn inclusion and the YBCO
matrix.

The elastic energy will now be obtained by computing
subsequent self-energy corrections to the two-body interac-
tion and to the one-body line tension. Let us first fix the
coordinate for the phase boundary above, Ri, as well as one
of the nanocolumn coordinates above, R j. Observe that the
three-body interaction Eq. �11� has zero angle average about
the center Ri over the remaining nanocolumn coordinate Rk.
This is due simply to the fact that the contour integral
�dzz−1�z−w�−2 around the unit circle, z=expi	 j,k�i��, van-
ishes for complex w inside that circle. Let us assume that
each nanocolumn has a hard core of radius r1�r0. At Ri,j
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r1, we then obtain the estimate �k�Vi,j,k=−�r1
2n	Vi,j,j for

the correction to the two-body interaction on average over
the bulk of the system. Here, n	 denotes the density of nano-
columns. The renormalized two-body interaction that results
is then Vi,j

�2�= �1−�r1
2n	�Vi,j,j. Next, let us assume an effective

hard core of radius r2��r1 for the nanocolumn at the coordi-
nate R j that remains. We thereby obtain the estimate
� j,k� Vi,j,k=n	��d2Ri,jVi,j

�2�=−�r2
2n	�1−�r1

2n	�E2D
�1� for the net

self-energy correction to the elastic energy of an isolated
nanocolumn inclusion, with

r2
2 = �1 − c�

�in�/c�
�out��/1 + c�

�out�/c�
�in��� · rout

4 /�r2�
2 − rout

2 �� .

�12�

This yields a total elastic energy density,

E2D/A = 1 − �r2
2n	�1 − �r1

2n	��n	E2D
�1� , �13�

as a function of the density of nanocolumns. The above
third-order polynomial is depicted by Fig. 1. It notably pre-
dicts weakly metastable epitaxial growth for relatively soft
nanorods within the YBCO matrix, such that c�

�in��c�
�out�.

This occurs at a density n	= �1+ 1− �3r1
2 /r2

2��1/2� /3�r1
2 of

nanorod inclusions at large effective cross sections �r2
2

�3�r1
2. The equilibrium density of nanorod inclusions there-

fore cannot be diluted. In particular, the effective volume
fraction �r1

2n	 must lie somewhere between 1 /3 and 2 /3. An
inspection of Eq. �12� indicates that the former condition
requires some degree of agglomeration among the nanocol-
umn inclusions; rout�r2��2rout. This may, however, be an
artifact of the previous estimate for the two-body self-energy
correction, which is not accurate at Ri,j �r1. Lastly, the elas-
tic energy cost per unit volume Eq. �13�� at metastable equi-
librium is E2D

�1� /9�r1
2= �2 /9���r /r1�2c�

�in�−1+c�
�out�−1�−1 in the

marginally stable limit at r2
2=3r1

2 �see Fig. 1�. The strong
dependence that it shows on the bulk compression modulus
of the inclusion affects growth dynamics. This could be the
root cause for the difference in length between BZO nano-
rods and BSO nanocolumns in YBCO.5

III. CRITICAL CURRENT BY TWO-DIMENSIONAL
COLLECTIVE PINNING

We shall now determine the critical current of a thin film
of superconducting YBCO threaded by nanorod inclusions
along the crystalline c axis and subject to external magnetic
field aligned along the same axis. Recall that the critical
temperature in an optimally doped YBCO superconductor is
primarily sensitive to shear strain in the a-b plane.6 That fact
coupled with the shear strain generated by a nanocolumn
inclusion Eq. �5� results in a potential-energy landscape for
vortex lines that can collectively pin the vortex lattice. In
particular, the contribution of the vortex core to the vortex
line tension is approximated by the fundamental energy scale
per unit length �0= ��0 /4�L�2, where L denotes the Lon-
don penetration depth. The temperature dependence shown
by the vortex line tension is therefore approximated by
�0�T�=�0�0�1− �T /Tc0�� near the mean-field critical tem-
perature Tc0. The potential-energy landscape experienced by
a vortex line then has a contribution ��1�r�
=�������0 /�Tc���Tc /���,����,��r�, where Tc is the true criti-
cal temperature and ��,� is the symmetric strain tensor Eq.
�5��. It results in a d-wave potential-energy landscape about
the nanocolumn for a vortex core,

��1�r� = �p�rout/r�2 cos 2	 , �14�

with �p=�0�0��T /Tc0�Tc
−1��Tc /��bb�− ��Tc /��aa��B0. Here

the ratio between Tc0 and Tc is assumed to be constant. A
rigid vortex line therefore experiences a force field,

f1�r� = fp�rout/r�3�r̂ cos 2	 + �̂ sin 2	� , �15�

due to the strain generated by a single nanocolumn inclusion,
where fp=2�p /rout is the maximum force per unit length.

The above pinning/antipinning force Eq. �15�� is long
range. However the presence of an extended field of nano-
columns can cut the range off �see Fig. 2�. Such forces are
added within the present elastic approximation Eq. �8��:
f�r�=�if1�r−Ri�. The d-wave nature of each isolated force
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FIG. 2. A potential-energy landscape for a single vortex line in units of ��p� and the coherence length that results from a superposition of
2744 d-wave collective pinning centers Eq. �14�� arranged in a “liquid” fashion is displayed �see Ref. 8�.
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field Eq. �15�� implies a null net force on average. A char-
acteristic fluctuation of the force over the YBCO matrix re-
mains: f2=n	��d2r�f1�r��2= 1

2 ��rout
2 n	�fp

2, where integration
�prime� is restricted to the YBCO matrix. Matching f2 with
�f1�r��2 yields an effective range for each pinning/antipinning
center rp= �2 /�n	�1/6rout

2/3.
The d-wave potential Eq. �14�� that acts on rigid vortex

lines in the vicinity of the phase boundaries between the
nanocolumn inclusions and the YBCO matrix has zero angle
average. It therefore cannot pin down a vortex line in isola-
tion. However previous work by one of the authors and
Maley7 implies that many of them collectively pin the Abri-
kosov vortex lattice. A hexatic Bose glass state can exist at
low temperature.8 It is a vortex lattice threaded by isolated
lines of edge dislocations in parallel to the relatively weak
correlated pinning/antipinning centers. Plastic creep of the
vortex lattice associated with glide by such edge dislocations
limits the critical current,7 which is given by jcB /c
�npfp

2 /c66b. Here np denotes the density of vortex lines
pinned by the nanocolumns, c66= ��0 /8�L�2nB is the elastic
shear modulus of the pristine vortex lattice at a density nB of
vortex lines,10 and b denotes the magnitude of the Burgers
vector associated with the edge dislocations that thread the
vortex lattice. The d-wave nature of the pinning/antipinning
center Eq. �14�� also implies that its occupation is purely
random. The density of vortex lines that they collectively pin
is then equal to np= ��pnB�n	, where �p=��rp

2 −rout
2 � is the

effective cross-sectional area of a pinning/antipinning center
�see Fig. 2�. The critical current density therefore obeys a
pure inverse square-root power law with magnetic field, jc
�B−1/2. Taking the values of �Tc /��aa=230 K and
�Tc /��bb=−220 K for the strain derivatives of Tc in opti-
mally doped YBCO �Ref. 6� can result in a pinning effi-
ciency, �fp�� /�0, of 93% at liquid nitrogen temperature.

IV. DISCUSSION AND CONCLUSIONS

We have found that the growth of nanorod inclusions in
YBCO films is very likely driven by weak metastability
shown by the elastic energy of epitaxial layers. We also have
pointed out how the sensitivity of the critical temperature in
optimally doped YBCO to pure shear strain inside of the a-b
plane6 results in an effective collective pinning center for the
Abrikosov vortex lattice at the phase boundary between the
nanorod inclusion and the YBCO matrix.

However the lattice mismatch along the c axis between
the nanorod inclusion and YBCO has so far been neglected.

YBCO has a unit cell that can be divided into a stack of three
cubes along the c axis, each with a lattice constant cout /3
=3.9 Å. The strain that results at the phase boundary with a
BZO nanorod or with a BSO nanocolumn, both of which are
cubic with lattice constants ain=4.2 Å and 4.1 Å, respec-
tively, can be relieved by introducing partial misfit disloca-
tions accompanied by stacking faults in the YBCO matrix.9

The predicted spacing between such stacking faults, cMoire
= �3 /cout�−ain

−1�−1, is then equal to 5 nm for BZO nanorods
and 8 nm for BSO nanocolumns �cf. Ref. 5�. Since their
effect on the previous elasticity analysis can be accounted for
by renormalized elastic moduli for the YBCO matrix, we
believe that our conclusions remain unchanged in their pres-
ence.
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APPENDIX: SURFACE INTEGRALS

Equation �9� gives the surface integral that determines the
three-body elastic interaction among nanocolumn inclusions.
Integration by parts combined with �2u�=0 yields that it is
symmetric with respect to the latter: Ii,j,k= Ii,k,j. In the case
that i= j, it reduces to the angular integral,

Ii,i,k =
1

2
rout

2 B0
2�

0

2�

d	�Ri,k
2 − rout

2

ri,k
2 − 1� , �A1�

where ri,k
2 =rout

2 +Ri,k
2 +2routRi,k cos �	−	k�. Here, 	k denotes

the orientation of the vector Ri,k=Ri−Rk. After making the
change of variables z=ei	, application of Cauchy’s theorem
yields that the integral vanishes: Ii,i,k=0. In the case that i
� j and i�k, the surface integral Eq. �9� reduces to

Ii,j,k =
1

4
rout

4 B0
2�

0

2�

d	� �Ri,j
2 − rout

2 �
ri,j

4 −
1

ri,k
2 +

Rj,k
2

ri,j
2 ri,k

2

−
�Ri,j

2 − rout
2 �Rj,k

2

ri,j
4 ri,k

2 + �j ↔ k�	 . �A2�

Repeating the previous steps results in a closed-form expres-
sion with a large number of terms. Symbolic manipulation
programs then help reduce these to the result in Eq. �10�.
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